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GENERALIZED CONTRACTIONS AND COMMON FIXED POINT
THEOREMS CONCERNING τ-DISTANCE

A. BAGHERI VAKILABAD1, S. MANSOUR VAEZPOUR2

Abstract. In this paper we consider the generalized distance, present a generalization of
Ćirić’s generalized contraction fixed point theorems on a complete metric space and inves-
tigate a common fixed point theorem about a sequence of mappings concerning generalized
distance.

1. Introduction and preliminary

In order to generalization of Banach’s contraction principle, Ćirić introduced generalized
contraction([16]). In 2001 Suzuki introduced the concept of τ -distance, a generalization of
both w-distance ([3]) and Tataru’s distance([13]), on a metric space, and discussed it’s proper-
ties and improved the generalization of Banach’s contraction principle , Caristi’s fixed point
theorem, Downing-Kirk’s theorem, Ekeland’s variational principal, Hamilton-Jacobi equa-
tion, the nonconvex minimization theorem according Takahashi and several fixed point the-
orems for contractive mapping with respect to w-distanc, See ([7],[8],[9],[10],[11], [6],[12],[13]).
In this paper using the λ-generalized contraction and τ -distance we prove some fixed point
theorems. Also, we investigate a sequence of maps which satisfy a common condition of
generalized contraction type.

At first we recall some definitions and lemmas which will be used later.

Definition 1.1. ([8])Let X be a metric space with metric d. A function p : X×X → [0,∞)
is called τ -distance on X if there exist a function η : X × [0,∞) → [0,∞) such that the
following are satisfied:

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;
(τ2) η(x, 0) = 0 and η(x, t) ≥ t for all x ∈ X and t ∈ [0,∞), and η is
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concave and continuous in it’s second variable;
(τ3) limn xn = x and limn sup{η(zn, p(zn, xm)) : m ≥ n} = 0, imply

p(w, x) ≤ lim infn p(w, xn) for all w ∈ X;
(τ4) limn sup{p(xn, ym) : m ≥ n} = 0 and limn η(xn, tn) = 0, imply

limn η(yn, tn) = 0;
(τ5) limn η(zn, p(zn, xn)) = 0 and limn η(zn, p(zn, yn)) = 0, imply

limn d(xn, yn) = 0.
It can be replaced (τ2) by the following (τ2)

′.
(τ2)

′ inf{η(x, t) : t > 0} = 0 for all x ∈ X, and η is nondecreasing in its second variable.
The best well-known τ -distances are the metric function d and w-distances. If p be a w-
distance on the metric space (X, d) and a function η from : X × [0,∞) into [0,∞) given by
η(x, t) = t, for all x ∈ X, then it is easy to check that p is a τ -distance.

Let (X, d) be a metric space and p be a τ -distance on X. A sequence {xn} in X is called
p-Cauchy if there exists a function η : X×[0,∞) → [0,∞) satisfying (τ2)-(τ5) and a sequence
zn in X such that limn sup{η(zn, p(zn, xm)) : m ≥ n} = 0.

The following lemmas are essential for next sections.

Lemma 1.2. ([7]) Let (X, d) be a metric space and p be a τ -distance on X. If {xn} is a
p-Cauchy sequence, then it is a Cauchy sequence. Moreover if {yn} is a sequence satisfying
limn sup{p(xn, ym) : m > n} = 0, then {yn} is also p-Cauchy sequence and limn d(xn, yn) = 0.

Lemma 1.3. ([7]) Let (X, d) be a metric space and p be a τ -distance on X. If {xn} in X
satisfies limn p(z, xn) = 0 for some z ∈ X, then xn is a p-Cauchy sequence. Moreover if {yn}
in X also satisfies limn p(z, yn) = 0, then limn d(xn, yn) = 0. In particular, for x, y, z ∈ X,
p(z, x) = 0 and p(z, y) = 0 imply x = y.

Lemma 1.4. ([7]) Let (X, d) be a metric space and p be a τ -distance on X. If a sequence
{xn} in X satisfies limn sup{p(xn, xm) : m > n} = 0, then {xn} is a p-Cauchy sequence.
Moreover, if {yn} in X satisfies limn p(xn, yn) = 0, then {yn} is also p-Cauchy sequence and
limn d(xn, yn) = 0.

Remark 1.5. If p(x, y) = 0 then the equality x = y is not necessarily hold, but p(x, y) =
p(y, x) = 0 imply x = y because 0 ≤ p(x, x) ≤ p(x, y) + p(y, x) = 0 and hence p(x, x) = 0.
Now by Lemma 1.3 x = y.

2. Generalized Contractions

Throughout this paper we denote by N the set of all positive integer, R real numbers with
usual metric and (X, d) be a complete metric space.

Definition 2.1. Let f and g be selfmappings on a complete metric space X, p be a τ -distance
on X and g(X) ⊆ f(X). We say g is λ-generalized contraction (shortly λ-GC) with respect
to (p, f), λ ∈ (0, 1), if and only if there exist nonnegative functions q, r, s, t, satisfying

supx,y∈X{q(x, y) + r(x, y) + s(x, y) + 4t(x, y)} ≤ λ < 1 (2.1)
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such that for each x, y ∈ X;

max{p(f(x), g(y)), p(g(y), f(x))} 5 q(x, y)p(x, y) + r(x, y)p(x, f(x)) (2.2)

+s(x, y)p(y, g(y)) + t(x, y)[p(x, g(y)) + p(y, f(x))].

Example 2.2. a)Let (X, d) be a complete metric space and p(x, y) = d(x, y), then every
contraction selfmapping f on X is λ-GC with respect to (p, f).
b) Let X = [0, 2] ⊆ R and

f(x) = g(x) =

{
x
9
, x ∈ [0, 1]

x
10

, x ∈ (1, 2].

q(x, y) = 1
10

, r(x, y) = s(x, y) = 1
4
, t(x, y) = 1

11
and p(x, y) = |x− y|. Then g is λ-GC with

respect to (p, f), but it is not a contraction mapping.

We prove the following lemma which will be used in the next theorem.

Lemma 2.3. Let x0 ∈ X. Define the sequence {xn} by

x2n+1 = f(x2n), x2n+2 = g(x2n+1), (2.3)

where f and g are selfmappings on X such that g is λ-GC with respect to (p, f). Then {xn}
is a Cauchy sequence.

Proof. Put
M1 = max{p(x2n+1, x2n+2), p(x2n+2, x2n+1)}

and
M2 = max{p(x2n, x2n+1), p(x2n+1, x2n)},

by (2.1), (2.2) and (2.3) we have,

M1 = max{p(f(x2n), g(x2n+1)), p(g(x2n+1), f(x2n))}
≤ λ max{p(x2n, x2n+1), p(x2n, f(x2n)),

p(x2n+1, g(x2n+1)),
1

4
[p(x2n, g(x2n+1)) + p(x2n+1, f(x2n)]}

= λ max{p(x2n, x2n+1), p(x2n, x2n+1),

p(x2n+1, x2n+2),
1

4
[p(x2n, x2n+2) + p(x2n+1, x2n+1)]}

= λM(x2n, x2n+1)

where

M(x2n, x2n+1) = max{p(x2n, x2n+1), p(x2n+1, x2n+2),
1

4
[p(x2n, x2n+2) + p(x2n+1, x2n+1)]}.

Now if M(x2n, x2n+1) = p(x2n+1, x2n+2), then we have,

p(x2n+1, x2n+2) ≤ λp(x2n+1, x2n+2),

which implies p(x2n+1, x2n+2) = 0.
If M(x2n, x2n+1) = 1

4
[p(x2n, x2n+2) + p(x2n+1, x2n+1)] then,

p(x2n+1, x2n+2) ≤ λ

4
[p(x2n, x2n+2) + p(x2n+1, x2n+1)],
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so

p(x2n+1, x2n+2) ≤ λ

2
p(x2n, x2n+2) or p(x2n+1, x2n+2) ≤ λ

2
p(x2n+1, x2n+1).

If p(x2n+1, x2n+2) ≤ λ
2
p(x2n, x2n+2) since,

λ

2
p(x2n, x2n+2) ≤ λ

2
[p(x2n, x2n+1) + p(x2n+1, x2n+2)]

≤ λ

2
p(x2n, x2n+1) +

1

2
p(x2n+1, x2n+2)

we have

p(x2n+1, x2n+2) ≤ λp(x2n, x2n+1).

If p(x2n+1, x2n+2) ≤ λ
2
p(x2n+1, x2n+1) since,

λ

2
p(x2n+1, x2n+1) ≤ λ

2
[p(x2n+1, x2n) + p(x2n, x2n+1)]

we have

p(x2n+1, x2n+2) ≤ λp(x2n+1, x2n) or p(x2n+1, x2n+2) ≤ λp(x2n, x2n+1).

Therefore in any cases we have;

M1 ≤ λp(x2n+1, x2n) or M1 ≤ λp(x2n, x2n+1). (2.4)

Similarly

M2 ≤ λp(x2n−1, x2n) or M2 ≤ λp(x2n, x2n−1). (2.5)

Continuing this process we have,

p(xn, xn+1) ≤ λ max{p(xn−1, xn), p(xn, xn−1)} ≤ ... ≤ λn max{p(x0, x1), p(x1, x0)}
Putting r(x0) = max{p(x0, x1), p(x1, x0)}, then for any m > n;

p(xm, xn) ≤
m−n−1∑

k=0

p(xn+k+1, xn+k) ≤
m−n−1∑

k=0

λ(n+k)r(x0) ≤ λnr(x0)(1− λ)−1.

So lim supn{p(xm, xn) : m ≥ n} = 0. Hence by Lemmas 1.2 and 1.4 {xn} is a Cauchy

sequence. ¤

Theorem 2.4. Let (X, d) be a metric space, p be a τ -distance on X and x0 ∈ X and f and
g be selfmappings on X such that g is λ-GC with respect to (p, f). Moreover assume that the
following holds:
If lim supn{p(xn, xm) : m > n} = 0 and limn p(xn, y) = 0 then, limn p(xn, f(xn)) = 0
implies f(y) = y and limn p(xn, g(xn)) = 0 implies g(y) = y. Then f and g have a unique
common fixed point, namely z, such that p(z, z) = 0 and (fg)n(x0) → z and (gf)n(x0) → z.
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Proof. Let x0 ∈ X. Define the sequence {xn} by x2n+1 = f(x2n) and x2n+2 = g(x2n+1).
Then by Lemma 2.3 {xn} is a Cauchy sequence and converges to some point z ∈ X. We
show that f(z) = z, and g(z) = z.
By (τ3) we have;

lim sup
n

(p(x2n, f(x2n)) + p(x2n, z)) ≤ lim sup
n

(p(x2n, x2n+1) + lim inf
m→∞

p(x2n, xm)

≤ 2 lim sup
m≥2n

p(x2n, xm) = 0.

Similarly lim supn(p(x2n+1, g(x2n+1)) + p(x2n+1, z)) = 0. Therefore

lim sup
n

{p(xn, xm) : m > n} = 0 and limn(xn, z) = 0.

So we have,
lim

n
(p(x2n, f(x2n)) = 0

and
lim

n
p(x2n, z) = 0.

Putting x′n = x2n, the hypothesis implies f(z) = z. With a similar computations we have
g(z) = z.
Now if we put x = y = z in (2.2) we get p(z, z) ≤ λp(z, z) which implies p(z, z) = 0.

If u be another common fixed point for f and g by using (2.2) we have

max{p(z, u), p(u, z)} 5 q(z, u)p(z, u) + r(z, u)p(z, z) + s(z, u)p(u, u)

+ t(z, u)[p(z, u) + p(u, z)]

≤ λ. max{p(z, u), p(z, z), p(u, u),
1

4
[p(z, u) + p(u, z)]}

= λ. max{p(z, u),
1

4
[p(z, u) + p(u, z)}.

The last equality holds because p(z, z) = p(u, u) = 0. In any cases this inequalities show
that p(z, u) = p(u, z) = 0 and by Remark 1.5 z = u.¤

Note that if f is continuous then, {xn} and {f(xn)} converge to y, implies f(y) = y. If
lim supn{p(xn, xm) : m > n} = 0, limn p(xn, y) = 0, and limn p(xn, f(xn)) = 0, then by
Lemma 1.4 we have limn xn = limn f(xn) = y, but in general it doesn’t imply f(y) = y.
For example, let X = R, (real numbers with usual metric), xn = n−1

n
, p = d, y = 1 and

f : R → R defined by

f(t) =

{
t, t 6= 1,

2, t = 1.

It is possible that gk be λ-GC with respect to (p, f), for some k ∈ N and k > 1, but g is not
so.

Example 2.5. Let X = {a, b, c} where a, b, c ∈ R are three distinct real numbers; f(x) = a,
constant map on X, and g : X → X is given by g(a) = a, g(b) = c, g(c) = a. Put p = d.
We have g2 = f , and so g2 is λ-GC with respect to (p, f), but since g(X) * f(X) so g is
not λ-GC with respect to (p, f).
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Corollary 2.6. Let (X, d) be a metric space, p be a τ -distance on X and x0 ∈ X and f
and g be selfmappings on X such that gk is λ-GC with respect to (p, f), for some k ∈ N .
Moreover assume that the following holds:
If lim supn{p(xn, xm) : m > n} = 0 and limn p(xn, y) = 0 then, limn p(xn, f(xn)) = 0
implies f(y) = y and limn p(xn, g

k(xn)) = 0 implies gk(y) = y. Then f and g have a unique
common fixed point.

Proof. By Theorem 2.4 f and gk have common fixed point, z. Now we have gk(g(z)) =
g(gk(z)) = g(z). It follows that g(z) = z = f(z), by uniqueness.¤

Corollary 2.7. Let (X, d) be a metric space, p be a τ -distance on X, x0 ∈ X and f and
g be selfmappings on X such that g is λ-GC with respect to (p, f). Moreover assume that if
{xn}, {f(xn)} and {g(xn)} converges to y, it implies f(y) = y and g(y) = y. Then f and g
have a unique common fixed point, namely z, such that p(z, z) = 0 and (fg)n(x0) → z and
(gf)n(x0) → z.

Corollary 2.8. Let (X, d) be a metric space, p be a τ -distance on X and x0 ∈ X. Suppose
f and g are continuous selfmappings on X,and g is λ-GC with respect to (p, f). Then f and
g have a unique common fixed point, namely z, such that p(z, z) = 0 and (fg)n(x0) → z and
(gf)n(x0) → z.

3. Sequence of Generalized Contraction Maps

Throughout this section we prove a common fixed point theorem for a sequence of maps
which satisfy a common condition of generalized contraction type. We begin with a lemma.

Lemma 3.1. Let (X, d) be a metric space, p be a τ -distance on X. Let f and f0 be self-
mappings on X such that the following holds:

max{p(f0(x), f(y)), p(f(y), f0(x))} ≤ λ max{p(x, y), p(x, f0(x)), (3.1)

p(y, f(y)), p(x, f(y)), p(y, f0(x))}
for some λ ∈ (0, 1) and all x, y ∈ X. If f0(z) = z and p(z, z) = 0, for some z ∈ X, then
f(z) = z and z is unique.

Proof. Since f0(z) = z, by (3.1) we have

max{p(z, f(z)), p(f(z), z)} = max{p(f0(z), f(z)), p(f(z), f0(z))}
5 λ max{p(z, z), p(z, f(z))} = λp(z, f(z))

which implies p(z, f(z)) = 0 and hence by Lemma 1.3 z = f(z).
If v ∈ X be such that f0(v) = v and p(v, v) = 0 then we have f(v) = v and

p(z, v) = p(f0(z), f(v)) ≤ λ max{p(z, v), p(z, z), p(v, v), p(v, z)}
= λ max{p(z, v), p(v, z)}.

With similar computation

p(v, z) ≤ λ max{p(z, v), p(v, z)}
so p(z, v) = p(v, z) = 0 and by Remark (1.5) v = z. ¤
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Theorem 3.2. Let (X, d) be a complete metric space, p be a τ -distance on X and {fn} be
a sequence of selfmappings on X, such that f0 is continuous and for each x, y ∈ X;

max{p(f0(x), fn(y)), p(fn(y), f0(x))} 5 λ. max{p(x, y), p(x, f0(x)), (3.2)

p(y, fn(y)), 1
4
[p(x, fn(y)) + p(y, f0(x))},

whereas λ ∈ (0, 1) and n = 0, 1, 2, 3, ... . Then {fn} have a unique common fixed point,
namely z, such that p(z, z) = 0.

Proof. Let x0 ∈ X. Define the sequence {xn} by

x1 = f0(x0), x2 = f0(x1) = f 2
0 (x0), ..., xn = fn

0 (x0), ... (3.3)

We show that {xn} is a Cauchy sequence. By (3.2) we have

max{p(xn, xn−1), p(xn−1, xn)} = max{p(f0(xn−1), f0(xn−2)), p(f0(xn−2), f0(xn−1))}
≤ λ max{p(xn−2, xn−1), p(xn−1, xn), 1

4
p(xn−2, xn) + p(xn−1, xn−1)}.

We will prove that

max{p(xn, xn−1), p(xn−1, xn)} ≤ λ max{p(xn−1, xn−2), p(xn−2, xn−1)}. (3.4)

To show this set M = max{p(xn−2, xn−1), p(xn−1, xn), 1
4
p(xn−2, xn) + p(xn−1, xn−1)}.

If M = p(xn−1, xn) then p(xn−1, xn) = 0 and (3.4) holds.
If M = p(xn−2, xn−1) then max{p(xn, xn−1), p(xn−1, xn)} ≤ λp(xn−2, xn−1) and (3.4) holds
If M = 1

4
p(xn−2, xn) + p(xn−1, xn−1)} then

4 max{p(xn, xn−1), p(xn−1, xn)} ≤ λp(xn−2, xn) + p(xn−1, xn−1) hence

2 max{p(xn, xn−1), p(xn−1, xn)} ≤ λp(xn−2, xn)

≤ λp(xn−2, xn−1) + p(xn−1, xn)

or

2 max{p(xn, xn−1), p(xn−1, xn)} ≤ λp(xn−1, xn−1)

≤ λp(xn−1, xn−2) + p(xn−2, xn−1)

which implies

max{p(xn, xn−1), p(xn−1, xn)} ≤ λ max{p(xn−1, xn−2), p(xn−2, xn−1)},
so in any cases (3.4) holds.
Continuing this process one has,

p(xn−1, xn) ≤ λ max{p(xn−2, xn−1), p(xn−1, xn−2)} ≤ ... ≤ λn max{p(x0, x1), p(x1, x0)}
Putting r(x0) = max{p(x0, x1), p(x1, x0)}, for any m > n;

p(xn, xm) ≤
m−n−1∑

k=0

p(xn+k, xn+k+1) ≤
m−n−1∑

k=0

λ(n+k)r(x0) ≤ λnr(x0)(1− λ)−1.

So lim supn{p(xn, xm) : m > n} = 0. Then by Lemma 1.4 {xn} is a Cauchy sequence, since
X is complete metric space there exist some point z ∈ X such that limn xn = z. On the
other hand continuity of f0 implies

f0(z) = f0(lim
n

xn) = lim
n

(f0(xn)) = lim
n

(xn+1) = z
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therefore f0(z) = z. By (3.2) we have

p(z, z) = p(f0(z), z) = p(z, f0(z)) = p(f0(z), f0(z)) 5 λp(z, z),

so p(z, z) = 0. Then by Lemma 3.1 z is a unique fixed point of f0 and fn(z) = z for all
n = 1, 2, 3, ... .¤

Note that if the condition of continuity of f0 is replaced by the lower semicontinity of p
in its first variable, the theorem will be holds too. Because if p be lower semicontinuous in
its first variable by (3.2) and triangle inequality we have

p(z, f0(z)) ≤ p(z, xn) + p(f0(xn−1), f0(z))

≤ p(z, xn) + λ max{p(z, xn−1), p(z, f0(z)), p(xn−1, fn(xn−1)),

1

4
[p(z, fn(xn−1)) + p(xn−1, f0(z))}

≤ p(z, xn) + λ. max{p(z, xn−1), p(z, f0(z)), p(xn−1, xn),

1

4
[p(z, xn) + p(xn−1, f0(z))]

≤ p(z, xn) + λ.[p(z, xn−1) + p(z, f0(z)) + p(xn−1, xn) + p(xn, z)]

hence

p(z, f0(z)) ≤ 1

1− λ
[p(z, xn) + λ[p(z, xn−1) + p(xn−1, xn) + p(xn, z)]].

By (τ3)

(p(xn, z)) ≤ lim inf
m

(p(xn, xm) ≤ λnr(x0)(1− λ)−1 (3.5)

so limn(p(xn, z)) = 0, moreover by construction limn(p(xn−1, xn)) = 0. Since p is lower
semicontinuous in its first variable we have

lim
n

p(z, xn) = lim
n

p(z, xn−1) = 0,

therefore p(z, f0(z)) = 0. On the other hand

p(f0(z), z) ≤ p(xn, z) + p(f0(z), f0(xn−1))

≤ p(xn, z) + λ max{p(z, xn−1), p(xn−1, f0(xn−1)), p(z, f0(z)),

1

4
[p(xn−1, f0(z)) + p(z, f0(xn−1))]}

≤ p(xn, z) + λ max{p(z, xn−1), p(xn−1, xn), p(z, f0(z)),

1

4
[p(xn−1, f0(z)) + p(z, xn)]}

≤ p(xn, z) + λ[p(z, xn−1) + p(xn−1, xn) + p(xn, z) + p(z, f0(z))].

Hence p(f0(z), z) = 0 and so f0(z) = z and we have the following theorem:

Theorem 3.3. Let (X, d) be a complete metric space, p be a τ -distance on X such that p
is lower semicontinuous in its first variable and {fn} be a sequence of selfmappings on X,
satisfying

max{p(f0(x), fn(y)), p(fn(y), f0(x))} 5 λ. max{p(x, y), p(x, f0(x)), (3.6)
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p(y, fn(y)), 1
4
[p(x, fn(y)) + p(y, f0(x))}.

for each x, y ∈ X, λ ∈ (0, 1) and n = 0, 1, 2, 3, ... . Then {fn} have a unique common fixed
point, namely z, such that p(z, z) = 0.
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